3.320 \(\int \frac{\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^3} \, dx\)

Optimal. Leaf size=106 \[ \frac{3 \cot (c+d x)}{a^3 d}+\frac{17 \cos (c+d x)}{3 a^3 d (\sin (c+d x)+1)}+\frac{2 \cos (c+d x)}{3 a^3 d (\sin (c+d x)+1)^2}-\frac{11 \tanh ^{-1}(\cos (c+d x))}{2 a^3 d}-\frac{\cot (c+d x) \csc (c+d x)}{2 a^3 d} \]

[Out]

(-11*ArcTanh[Cos[c + d*x]])/(2*a^3*d) + (3*Cot[c + d*x])/(a^3*d) - (Cot[c + d*x]*Csc[c + d*x])/(2*a^3*d) + (2*
Cos[c + d*x])/(3*a^3*d*(1 + Sin[c + d*x])^2) + (17*Cos[c + d*x])/(3*a^3*d*(1 + Sin[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.268578, antiderivative size = 106, normalized size of antiderivative = 1., number of steps used = 11, number of rules used = 8, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.296, Rules used = {2874, 2966, 3770, 3767, 8, 3768, 2650, 2648} \[ \frac{3 \cot (c+d x)}{a^3 d}+\frac{17 \cos (c+d x)}{3 a^3 d (\sin (c+d x)+1)}+\frac{2 \cos (c+d x)}{3 a^3 d (\sin (c+d x)+1)^2}-\frac{11 \tanh ^{-1}(\cos (c+d x))}{2 a^3 d}-\frac{\cot (c+d x) \csc (c+d x)}{2 a^3 d} \]

Antiderivative was successfully verified.

[In]

Int[(Cot[c + d*x]^2*Csc[c + d*x])/(a + a*Sin[c + d*x])^3,x]

[Out]

(-11*ArcTanh[Cos[c + d*x]])/(2*a^3*d) + (3*Cot[c + d*x])/(a^3*d) - (Cot[c + d*x]*Csc[c + d*x])/(2*a^3*d) + (2*
Cos[c + d*x])/(3*a^3*d*(1 + Sin[c + d*x])^2) + (17*Cos[c + d*x])/(3*a^3*d*(1 + Sin[c + d*x]))

Rule 2874

Int[cos[(e_.) + (f_.)*(x_)]^2*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)
, x_Symbol] :> Dist[1/b^2, Int[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 1)*(a - b*Sin[e + f*x]), x], x] /;
 FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0] && (ILtQ[m, 0] ||  !IGtQ[n, 0])

Rule 2966

Int[sin[(e_.) + (f_.)*(x_)]^(n_.)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.
)*(x_)]), x_Symbol] :> Int[ExpandTrig[sin[e + f*x]^n*(a + b*sin[e + f*x])^m*(A + B*sin[e + f*x]), x], x] /; Fr
eeQ[{a, b, e, f, A, B}, x] && EqQ[A*b + a*B, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] && IntegerQ[n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 2650

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Cos[c + d*x]*(a + b*Sin[c + d*x])^n)/(a*
d*(2*n + 1)), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2648

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> -Simp[Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rubi steps

\begin{align*} \int \frac{\cot ^2(c+d x) \csc (c+d x)}{(a+a \sin (c+d x))^3} \, dx &=\frac{\int \frac{\csc ^3(c+d x) (a-a \sin (c+d x))}{(a+a \sin (c+d x))^2} \, dx}{a^2}\\ &=\frac{\int \left (\frac{5 \csc (c+d x)}{a}-\frac{3 \csc ^2(c+d x)}{a}+\frac{\csc ^3(c+d x)}{a}-\frac{2}{a (1+\sin (c+d x))^2}-\frac{5}{a (1+\sin (c+d x))}\right ) \, dx}{a^2}\\ &=\frac{\int \csc ^3(c+d x) \, dx}{a^3}-\frac{2 \int \frac{1}{(1+\sin (c+d x))^2} \, dx}{a^3}-\frac{3 \int \csc ^2(c+d x) \, dx}{a^3}+\frac{5 \int \csc (c+d x) \, dx}{a^3}-\frac{5 \int \frac{1}{1+\sin (c+d x)} \, dx}{a^3}\\ &=-\frac{5 \tanh ^{-1}(\cos (c+d x))}{a^3 d}-\frac{\cot (c+d x) \csc (c+d x)}{2 a^3 d}+\frac{2 \cos (c+d x)}{3 a^3 d (1+\sin (c+d x))^2}+\frac{5 \cos (c+d x)}{a^3 d (1+\sin (c+d x))}+\frac{\int \csc (c+d x) \, dx}{2 a^3}-\frac{2 \int \frac{1}{1+\sin (c+d x)} \, dx}{3 a^3}+\frac{3 \operatorname{Subst}(\int 1 \, dx,x,\cot (c+d x))}{a^3 d}\\ &=-\frac{11 \tanh ^{-1}(\cos (c+d x))}{2 a^3 d}+\frac{3 \cot (c+d x)}{a^3 d}-\frac{\cot (c+d x) \csc (c+d x)}{2 a^3 d}+\frac{2 \cos (c+d x)}{3 a^3 d (1+\sin (c+d x))^2}+\frac{17 \cos (c+d x)}{3 a^3 d (1+\sin (c+d x))}\\ \end{align*}

Mathematica [B]  time = 5.6316, size = 308, normalized size = 2.91 \[ \frac{\left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^3 \left (-32 \sin \left (\frac{1}{2} (c+d x)\right )-272 \sin \left (\frac{1}{2} (c+d x)\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^2+16 \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )+3 \cos \left (\frac{1}{2} (c+d x)\right ) \left (\tan \left (\frac{1}{2} (c+d x)\right )+1\right )^3-3 \sin \left (\frac{1}{2} (c+d x)\right ) \left (\cot \left (\frac{1}{2} (c+d x)\right )+1\right )^3-132 \log \left (\cos \left (\frac{1}{2} (c+d x)\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^3+132 \log \left (\sin \left (\frac{1}{2} (c+d x)\right )\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^3-36 \tan \left (\frac{1}{2} (c+d x)\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^3+36 \cot \left (\frac{1}{2} (c+d x)\right ) \left (\sin \left (\frac{1}{2} (c+d x)\right )+\cos \left (\frac{1}{2} (c+d x)\right )\right )^3\right )}{24 a^3 d (\sin (c+d x)+1)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cot[c + d*x]^2*Csc[c + d*x])/(a + a*Sin[c + d*x])^3,x]

[Out]

((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3*(-32*Sin[(c + d*x)/2] - 3*(1 + Cot[(c + d*x)/2])^3*Sin[(c + d*x)/2] +
 16*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2]) - 272*Sin[(c + d*x)/2]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^2 + 36*
Cot[(c + d*x)/2]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3 - 132*Log[Cos[(c + d*x)/2]]*(Cos[(c + d*x)/2] + Sin[(
c + d*x)/2])^3 + 132*Log[Sin[(c + d*x)/2]]*(Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^3 - 36*(Cos[(c + d*x)/2] + Si
n[(c + d*x)/2])^3*Tan[(c + d*x)/2] + 3*Cos[(c + d*x)/2]*(1 + Tan[(c + d*x)/2])^3))/(24*a^3*d*(1 + Sin[c + d*x]
)^3)

________________________________________________________________________________________

Maple [A]  time = 0.178, size = 157, normalized size = 1.5 \begin{align*}{\frac{1}{8\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}-{\frac{3}{2\,d{a}^{3}}\tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) }+{\frac{8}{3\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) +1 \right ) ^{-3}}-4\,{\frac{1}{d{a}^{3} \left ( \tan \left ( 1/2\,dx+c/2 \right ) +1 \right ) ^{2}}}+14\,{\frac{1}{d{a}^{3} \left ( \tan \left ( 1/2\,dx+c/2 \right ) +1 \right ) }}-{\frac{1}{8\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-2}}+{\frac{3}{2\,d{a}^{3}} \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}}+{\frac{11}{2\,d{a}^{3}}\ln \left ( \tan \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c))^3,x)

[Out]

1/8/d/a^3*tan(1/2*d*x+1/2*c)^2-3/2/d/a^3*tan(1/2*d*x+1/2*c)+8/3/d/a^3/(tan(1/2*d*x+1/2*c)+1)^3-4/d/a^3/(tan(1/
2*d*x+1/2*c)+1)^2+14/d/a^3/(tan(1/2*d*x+1/2*c)+1)-1/8/d/a^3/tan(1/2*d*x+1/2*c)^2+3/2/d/a^3/tan(1/2*d*x+1/2*c)+
11/2/d/a^3*ln(tan(1/2*d*x+1/2*c))

________________________________________________________________________________________

Maxima [B]  time = 1.21528, size = 333, normalized size = 3.14 \begin{align*} \frac{\frac{\frac{27 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac{403 \, \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{681 \, \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{372 \, \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} - 3}{\frac{a^{3} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac{3 \, a^{3} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} + \frac{3 \, a^{3} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}} + \frac{a^{3} \sin \left (d x + c\right )^{5}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{5}}} - \frac{3 \,{\left (\frac{12 \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac{\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}}\right )}}{a^{3}} + \frac{132 \, \log \left (\frac{\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1}\right )}{a^{3}}}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/24*((27*sin(d*x + c)/(cos(d*x + c) + 1) + 403*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 681*sin(d*x + c)^3/(cos(
d*x + c) + 1)^3 + 372*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 - 3)/(a^3*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 3*a^
3*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 + 3*a^3*sin(d*x + c)^4/(cos(d*x + c) + 1)^4 + a^3*sin(d*x + c)^5/(cos(d*
x + c) + 1)^5) - 3*(12*sin(d*x + c)/(cos(d*x + c) + 1) - sin(d*x + c)^2/(cos(d*x + c) + 1)^2)/a^3 + 132*log(si
n(d*x + c)/(cos(d*x + c) + 1))/a^3)/d

________________________________________________________________________________________

Fricas [B]  time = 1.78354, size = 969, normalized size = 9.14 \begin{align*} -\frac{104 \, \cos \left (d x + c\right )^{4} + 142 \, \cos \left (d x + c\right )^{3} - 90 \, \cos \left (d x + c\right )^{2} + 33 \,{\left (\cos \left (d x + c\right )^{4} - \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + \cos \left (d x + c\right ) + 2\right )} \log \left (\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) - 33 \,{\left (\cos \left (d x + c\right )^{4} - \cos \left (d x + c\right )^{3} - 3 \, \cos \left (d x + c\right )^{2} -{\left (\cos \left (d x + c\right )^{3} + 2 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) + \cos \left (d x + c\right ) + 2\right )} \log \left (-\frac{1}{2} \, \cos \left (d x + c\right ) + \frac{1}{2}\right ) + 2 \,{\left (52 \, \cos \left (d x + c\right )^{3} - 19 \, \cos \left (d x + c\right )^{2} - 64 \, \cos \left (d x + c\right ) + 4\right )} \sin \left (d x + c\right ) - 136 \, \cos \left (d x + c\right ) - 8}{12 \,{\left (a^{3} d \cos \left (d x + c\right )^{4} - a^{3} d \cos \left (d x + c\right )^{3} - 3 \, a^{3} d \cos \left (d x + c\right )^{2} + a^{3} d \cos \left (d x + c\right ) + 2 \, a^{3} d -{\left (a^{3} d \cos \left (d x + c\right )^{3} + 2 \, a^{3} d \cos \left (d x + c\right )^{2} - a^{3} d \cos \left (d x + c\right ) - 2 \, a^{3} d\right )} \sin \left (d x + c\right )\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/12*(104*cos(d*x + c)^4 + 142*cos(d*x + c)^3 - 90*cos(d*x + c)^2 + 33*(cos(d*x + c)^4 - cos(d*x + c)^3 - 3*c
os(d*x + c)^2 - (cos(d*x + c)^3 + 2*cos(d*x + c)^2 - cos(d*x + c) - 2)*sin(d*x + c) + cos(d*x + c) + 2)*log(1/
2*cos(d*x + c) + 1/2) - 33*(cos(d*x + c)^4 - cos(d*x + c)^3 - 3*cos(d*x + c)^2 - (cos(d*x + c)^3 + 2*cos(d*x +
 c)^2 - cos(d*x + c) - 2)*sin(d*x + c) + cos(d*x + c) + 2)*log(-1/2*cos(d*x + c) + 1/2) + 2*(52*cos(d*x + c)^3
 - 19*cos(d*x + c)^2 - 64*cos(d*x + c) + 4)*sin(d*x + c) - 136*cos(d*x + c) - 8)/(a^3*d*cos(d*x + c)^4 - a^3*d
*cos(d*x + c)^3 - 3*a^3*d*cos(d*x + c)^2 + a^3*d*cos(d*x + c) + 2*a^3*d - (a^3*d*cos(d*x + c)^3 + 2*a^3*d*cos(
d*x + c)^2 - a^3*d*cos(d*x + c) - 2*a^3*d)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2*csc(d*x+c)**3/(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.42917, size = 193, normalized size = 1.82 \begin{align*} \frac{\frac{132 \, \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) \right |}\right )}{a^{3}} - \frac{3 \,{\left (66 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 12 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}}{a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}} + \frac{3 \,{\left (a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 12 \, a^{3} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{a^{6}} + \frac{16 \,{\left (21 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 36 \, \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 19\right )}}{a^{3}{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}^{3}}}{24 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2*csc(d*x+c)^3/(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/24*(132*log(abs(tan(1/2*d*x + 1/2*c)))/a^3 - 3*(66*tan(1/2*d*x + 1/2*c)^2 - 12*tan(1/2*d*x + 1/2*c) + 1)/(a^
3*tan(1/2*d*x + 1/2*c)^2) + 3*(a^3*tan(1/2*d*x + 1/2*c)^2 - 12*a^3*tan(1/2*d*x + 1/2*c))/a^6 + 16*(21*tan(1/2*
d*x + 1/2*c)^2 + 36*tan(1/2*d*x + 1/2*c) + 19)/(a^3*(tan(1/2*d*x + 1/2*c) + 1)^3))/d